[RE-wrenches] Cable Sizing - revisited, Ambient Temp

Dave Click daveclick at fsec.ucf.edu
Tue Jan 25 12:37:20 PST 2011


John,

The 2% "ambient temperature" from ASHRAE is the appropriate starting 
point to use for these calculations. For some additional background I'll 
quote Bill:

**
ASHRAE bases its ‘warm‐season temperature conditions’ for each city on 
annual percentiles of 0.4%, 1.0% and 2.0%. As an example, the June 2.0% 
dry‐bulb design temperature for Atlanta is 91.7°F. Therefore, based on a 
30‐day month (i.e. 720 hours), the actual temperatures can be expected 
to exceed 91.7°F a total of 14 hours a month. The corresponding 1.0% 
design temperature (93.1°F) can be expected to be exceeded for 7 hours a 
month; while the 0.4% design temperature (94.6°F) can be expected to be 
exceeded for 3 hours a month (column 2).
**

In Jim Dunlop's example it sounds like he's starting with the summer 
ambient high (likely around 90F / 32C) and adding the 310.15(B)(2)(c) 
33C figure to reach the 61-70C range.

IMHO, ASHRAE 2% high temperature should be the "standard practice" for 
these conditions when calculating your base ambient temperature before 
additional adders. There are going to be site-specific conditions like 
your example where the conduits may heat up more than 310.15(B)(2)(c) 
requires; in that case I think you'd be on the right track to make your 
own field measurements to determine an appropriate temperature. In some 
cases the 10%/10ft rule may mean you can ignore short hot spots in the 
wire. If you had a situation where the conduit was in direct sunlight, 
plus light was being reflected off the roof and a light-colored wall 
behind the conduit, I suppose that would yield more heating than what 
the CDA study had found (http://www.iaei.org/magazine/?p=1743). I'm not 
sure that shooting an IR thermometer is the best option here; if you 
want to best replicate the study conditions, you may put a conduit 
section up on the roof in the desired location, put a temperature sensor 
in the conduit, and let it soak. Then compare that number with [ASHRAE 
2% + 310.15(B)(2)(c)] and pick the higher number. Or just add an 
additional 10C on top of ASHRAE+B2c and be done with it...

I think your plan of trying to measure the temperature 4" off the roof 
where the conduit sits, and then adding the additional 17C (or whatever) 
from the Table, will be too conservative; your initial measurement will 
be affected by some of the heating that's wrapped into the 
310.15(B)(2)(c) factor and you'd be double-counting that effect.

Hope that helps.
Dave

-------- Original Message --------
Subject: [RE-wrenches] Cable Sizing - revisited, Ambient Temp
From: John Wadley <wadleyjk at hotmail.com>
To: RE-wrenches <re-wrenches at lists.re-wrenches.org>
Date: 2011/1/22 02:40

> Mr. Brooks,
> You replied to Mr. Parrish back in 2009 with this example (below) on
> properly applying all the deratings to ampacity for wire sizing. I have
> a bit of confusion and a question about the definition of "ambient
> temperature". You define it below as the ASHREA 2% high temp. My NEC
> 2008 (310.15 (2) Except No. 5 (3) (b) FPN) mentions it being an "average
> ASHREA" number. The only definition for "ambient temp" in NEC I could
> find was 310.10 FPN (1) which says it "varies along the length of the
> conductor by time and place". In the Photovoltaic Systems by Dunlop, p.
> 288, he cites a sizing example without saying where ambient comes from
> but uses 61C-70C (142F-158F) derate factor (0.58) for a sunlit roof top
> conduit. He does not say how he arrives at that tempature range, but I
> suspect he started with the 90F rating of the USE-2 conductor in the
> example and added a Table 310.15 (B) (2) (c) adder of 33C. Other
> articles I've read talk about conditions like an unventilated attic or a
> sunlit jbox on a roof where ambient temps could reach 150F. I can also
> think of a situation where on a flat roof with a surrounding parapet
> wall, the sunlight shining into a corner would act like a solar oven on
> any conduit running close to the corner. So, given all these definitions
> and possible exceptions to the definition of "ambient temperature", does
> your original definition (ASHREA 2% high temp) still stand as standard
> practice for most conditions and are there situations where one should
> use something other than that defined value? If one is unsure of an
> exceptional situation, would it make sense to use an IR thermometer to
> measure free air temp on a sunny, calm day and then the air temp exactly
> where conduit might run and use the temp delta as an adder (like Table
> 310.15 (B) 2 (c)) to the ASHREA 2% high temp to arrive at a new,
> situational ambient temp before applying the other factors cited?
>
> Thanks in advance,
> John Wadley, PE
> Wadley Engineering
> NABCEP Certified Solar PV Installer (TM)
> Dallas, TX
>
> Peter,
>
> We cannot use load diversity to increase the number of conductors in a PV
> conduit since there generally is little diversity among the conductors,
> particularly on large arrays.
>
> The more traditional conduit adjustment table to use is Table
> 310.15(B)(2)(a). The value from this table is multiplied by the temperature
> adjustment factor in Table 310.16. The key is what to use as the ambient
> temperature in Table 310.16. We also have the third adjustment of Table
> 310.15(B)(2)(c) in the 2008 NEC for conduit close to rooftops. Even if you
> are excused from using the 2008 NEC by a jurisdiction, the 2005 NEC has
> 310.10 FPN2 that generally recommends a 17C adder on ambient temperature.
>
> The NEC has not had any explanation as to what ambient temperature to use
> until the 2008 NEC in the FPN to Table 310.15(B)(2)(c) when it referenced
> ASHRAE data in an incorrect way. To be consistent with the Copper
> Development Industry, we have put a proposal into the 2011 NEC to use the
> ASHRAE 2% design temperatures. These values can be downloaded at
> www.copper.org.
>
> Summarizing in an example:
>
> Assume that 8 current carrying conductors, with and Imax of 10 amps [as
> defined by 690.8(a)], are in a conduit in direct sun 4" off the roof deck in
> Palm Springs, California. What must be the 30C ampacity of the conductor to
> meet the requirement?
>
> Answer:
>
> I(30C) = 10A/(conduit fill adjustment)/(Temp adjustment--direct sunlit
> conduit)
>
> Conduit fill adjustment factor = 0.7 (70%)
>
> Direct sunlit conduit temperature = +17C above ambient
> 2% Design Temp for Palm Springs = 44.1C (ASHRAE 2005 Fundamentals)
> Design temp = 44.1 + 17 = 61.1C --corresponds to a 0.58 factor for 90C
> conductors
>
> I(30C) = 10A/0.7/0.58 = 24.63 amps -- minimum conductor size is 14 AWG
> (barely)
>
> Most inspectors will quickly cite the fact that the ampacity cannot be
> greater than the 75C column, so we check to make sure (nearly always is just
> fine). The 75C column says that 14 AWG wire can handle 20 amps (Imax is
> 10amps) at 30C but the asterisk limits our overcurrent protection to 15 amps
> (since the module has a 15 amp max fuse rating, we are already using the
> required 15 amp device).
>
> The upshot is that even a 14 AWG 90C conductor works in almost the hottest
> climate in the U.S. as long as only 8 conductors or less in conduit, conduit
> is at least 4" above roof, and no more than 10 amps flowing through it. Most
> contractors will use 10AWG for small systems and occasionally 12AWG. 10AWG
> makes it simple since it meets all wiring options in today's smaller
> systems. 12AWG works in many cases, and, as our example shows, even 14 AWG
> works in some circumstances (we're talking ampacity, not voltage
> drop--that's a different issue). In large systems, generally we specify the
> minimum wire since it adds up after a few miles of conductor.
>
> Now wasn't that fun--I can't believe anyone could be put to sleep by that
> (maybe want to commit suicide, but no sleeping here). The short answer is
> that it is complicate and not well organized in the code because the
> majority of wiring systems are indoor. PV and HVAC systems are the two most
> common outdoor wiring systems requiring these calculations. Most electrical
> engineers doing HVAC wiring are just now learning this stuff.
>
> Most inspectors will quickly cite the fact that the ampacity cannot be
> greater than the 75C column, so we check to make sure (nearly always is just
> fine).
>
> --- other stuff cut ---
>
>
>
> _______________________________________________
> List sponsored by Home Power magazine
>
> List Address: RE-wrenches at lists.re-wrenches.org
>
> Options&  settings:
> http://lists.re-wrenches.org/options.cgi/re-wrenches-re-wrenches.org
>
> List-Archive: http://lists.re-wrenches.org/pipermail/re-wrenches-re-wrenches.org
>
> List rules&  etiquette:
> www.re-wrenches.org/etiquette.htm
>
> Check out participant bios:
> www.members.re-wrenches.org
>



More information about the RE-wrenches mailing list